skip to main content


Search for: All records

Creators/Authors contains: "Akanbi, Temitope"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Offsite construction (e.g., wood modular houses) has many advantages over traditional stick-built construction, ranging from schedule/cost reduction to improvement in safety and quality of the built product. Unlike stick-built, offsite construction demands higher levels of design and planning coordination at the early stages of the construction project to avoid cost overruns and/or delays. However, most companies still rely on 2D drawings in the development of shop drawings, which are required for the fabrication of the building components such as walls and roofs. In practice, the process of developing shop drawings is usually based on manually interpreting the 2D drawings and specifications, which is time-consuming, costly, and prone to human errors. A 3D information model can improve the accuracy of this process. To help achieve this, the authors developed a semi-automated method that can process 2D orthographic views of building components and convert them to 3D models, which can be useful for fabrication. The developed 3D information model can be further transformed to building information models (BIMs) to support collaboration amongst users and data exchanges across platforms. The developed method was evaluated in the development of wall components of a student apartment project in Kalamazoo, MI. Experimental results showed that the developed method successfully generated the 3D information model of the wall components. A time comparison with the state-of-the-art practices in developing the wall components was performed. Results showed that the developed method utilized approximately 22% of the time it took the state-of-the-art manual method to generate the 3D models. 
    more » « less
  2. null (Ed.)
    In achieving full automation of construction cost estimation, the complete processes involved in computing cost estimates must be automated. The typical processes involved in achieving cost estimates are: (1) classification and matching of model elements to their various categories; (2) taking off quantities from design documents or building information models; (3) retrieving unit cost from a cost database; and (4) applying the unit costs and quantities in computing the cost estimate. Although, the level of automation in quantity takeoff has been relatively high, most commercial software programs still require manual inputs from estimators to: (1) match materials of building elements to work items; and/or (2) fulfill essential information requirements that may be missing from design models for accurate cost estimate computations. These missing information are usually obtained from the construction specifications in supplement to the design models. Automating the process of design information extraction from construction specifications can help reduce: (1) the time and cost of the estimation, (2) the manual inputs required in cost estimation computations, and (3) human errors in cost estimates. This paper explores the use of natural language processing techniques to help process construction specifications and the authors propose a new algorithmic method for extracting the needed design information from construction specifications to support wood construction cost estimation. A case study was conducted on a wood construction project to evaluate the authors’ proposed method. The results showed that the proposed method successfully searched for and found design details from construction specifications to fulfil essential information requirements for detailed wood construction cost estimation, with a 94.9% precision and a 97.4% recall. 
    more » « less
  3. A major gap in the automation of construction cost estimation is the need of manual inputs to complete cost estimation processes. To address this gap, the authors propose a new method for matching wood building elements from a Building Information Modeling (BIM)-based design to cost data entries in a cost database. The proposed method uses a java constructor and HashMap to create objects, and store and retrieve the created values of the objects. Term matching and natural language processing (NLP) techniques are used in the method to match items from a design model and automatically extract their unit costs from a cost database. These unit costs retrieved are then used in generating the cost estimates. The proposed method was tested on estimating a wood construction model retrieved online. A cost estimate was successfully generated. Comparison of the experimental results with results from the state-of-the-art commercial software showed that the algorithms developed from the proposed method reduced the manual inputs required in generating wood construction cost estimates. 
    more » « less